Uppsala University

Department of Information Technology
Division of Systems and Control
DW/NW 2019-06

Last rev. October 10, 2022 by DW

Advanced Probabilistic Machine Learning
Instruction to the laboratory work

Unsupervised Learning with
Variational Autoencoders

Language: Python

Preparation:
Solve all preparatory exercises in Section

Reading instructions:
» Laboratory instructions: Section

* Kingma, D. P., & Welling, M. (2019). An introduction to variational autoen-
coders. arXiv: 1906.02691 [cs.LG].

Name Assistant’s comments
Program Year of reg.

Date

Passed prep. ex. Sign

Passed lab. Sign

https://arxiv.org/abs/1906.02691

Contents

[3 Preparatory exercises|
[3.1 Probabilistic principal component analysis|

[4 Laboratory session|
4.1 MNIST data setl

W NN

&~ B

1 Introduction

Unsupervised learning tries to find unknown patterns in unlabeled data. In the
lecture we have seen principal component analysis (PCA), probabilistic principal
component analysis (PPCA), and variational autoencoders as three examples of
unsupervised learning. In this lab we will try to find patterns in images of hand-
written digits and train a model that can generate similarly looking images.

This laboratory work is based on lectures 10 to 13 and exercise sessions 10 and 11
about variational inference, unsupervised learning, and variational autoencoders.
Therefore it is advisable to have the material from those lectures and exercise
sessions fresh in mind before starting this laboratory work.

The goal of this laboratory work is to:
* Learn how to train a probabilistic PCA model.
* Learn how to train a variational autoencoder.
* Get a glimpse of a state-of-the-art machine learning framework.

Throughout the lab we will us a software library called PyTorch. This library is
introduced in Section [2] Section [3|contains the preparatory exercises, and Section [4]
contains the instructions for the lab session.

Important: Read Section [2]and answer the preparatory exercises in Section 3| before
the lab session.

2 PyTorch

PyTorch is an open source software library for machine learning that is based on
the machine learning library Torch which is no longer actively developed. PyTorch
is developed primarily by Facebook’s artificial intelligence research group and used
by companies as well as academic research groups. It can be used for general
computations with multidimensional arrays on CPUs and GPUs, but it is tailored
especially to deep learning and neural networks.

PyTorch is natively written in Python and C++, and well documented APIs exist for
these languages. It is not the only deep learning framework, some other state-of-the-
art alternatives are TensorFlow and MXNet.

2.1 Installation

If you use your own computer for the computer lab, you need to have PyTorch prop-
erly installed before the labﬂ The lab assistants will not be able to assist you with
the installation process during the lab. Please consult the PyTorch documentation
for more information about the installation procedure.

Another option is to use |Google Colab to work with PyTorch online. This cloud
platform also optionally provides access to GPUs which might speed up some
computations.

On the Linux systems in the computer rooms where the laboratory session is
scheduled only an old unsupported version of PyTorch is installed. However, you
can use these computers to access and work with Google Colab.

2.2 Comparison with TensorFlow

As PyTorch, TensorFlow contains support for GPUs and builds a computational
graph that is used for computing gradients via backpropagation. However, Tensor-
flow builds a static computational graph whereas PyTorch works with a dynamic
computational graph. In TensorFlow the graph is created once and then executed
multiple times, but in PyTorch every forward pass defines a new computational
graph. Thus in TensorFlow the computational graph can be optimized before run-
ning any actual computations. Even if this optimization might be computationally
expensive, it can pay off if the graph is run multiple times. On the other hand,
an advantage of using dynamic graphs is the increased flexibility with respect to
the control flow that they allow. Since the computational graph is rebuilt in each
forward pass, one can use regular i f statements and for loops (even without fixed
numbers of iterations) and easily change the computations in different iterations of
the training loop.

'The lab is written for the most recent PyTorch version, therefore make sure to install the latest
version.

https://pytorch.org/get-started/locally/
https://colab.research.google.com/

2.3 Introduction

A Jupyter notebook with an introduction to PyTorch can be downloaded from here.
Alternatively, you can open it on Google Colab. Reading and running the notebook
is highly recommended, since it introduces important concepts and commands that
are required in the lab session.

The official PyTorch tutorials and the PyTorch documentation might be helpful
additional resources, in particular if you are looking for a more general introduction
to PyTorch. However, the introduction to PyTorch in the provided Jupyter notebook
covers everything you should know for the lab session.

https://uu-sml.github.io/course-sml-public/lab/introduction.ipynb
https://colab.research.google.com/github/uu-sml/course-sml-public/blob/master/lab/introduction.ipynb
https://pytorch.org/tutorials/
https://pytorch.org/docs/stable/index.html

3 Preparatory exercises

3.1 Probabilistic principal component analysis

In constrast to (regular) PCA, the so-called probabilistic PCA (PPCA) (Tipping
& Bishop, |1999) allows a probabilistic interpretation of the principal components.
The probabilistic formulation of PCA also allows us to extend the method and alter
its underlying assumptions quite easily, as we will learn during the course of this
laboratory.

Let x € R represent a data sample that we want to decode from a lower dimen-
sional representation z € R with M < D. The PPCA model assumes that z is
standard normally distributed and x can be decoded by a noisy linear transformation
of z. Mathematically, the model is given by

p(x|z) =N (x; Wz + u,aQID) ,
p(z) = N(2;0,1n),

with parameters W € RP*M 1y ¢ RP, and 02 > 0. Tipping and Bishop (1999)
showed that for 2 — 0 the model recovers the standard PCA (but the components
of z might be permuted).

We assume that the data x;,...,x is identically and independently distributed
according to the PPCA model. In a maximum likelihood setting, one determines
the parameters W, p, and o2 that maximize the likelihood

N
p(x17 s 7XN;W7lJ/7O'2) = Hp(xn;waﬂ702)7

n=1

or equivalently the log-likelihood

N
logp(x1, ..., XN W, 1,0%) = Y log p(xn; W, 1, 07).

n=1
Question 3.1: Show that for the model of the probabilistic PCA
p(x) = N(x; 1, C),

where C = WWT + ¢21p (cf. exercise 11.2a).

Tip 3.1 Use Corollary 2 in lecture 2. o

N /

The PPCA is defined as a model for how to decode a latent vector z to the observed
data x. Of course, as in the regular PCA, we would like to encode data x in the
lower dimensional latent space as well.

Question 3.2 (cf. exercise 11.2b) 3.2: Show that the distribution of the latent
variable z conditioned on x is Gaussian as well and given by

p(z|%) = N (MW (x —), 0®M),

where M = WTW + 021 (cf exercise 1].2b).
Tip 3.2 Use Corollary 1 in lecture 2.)

Note that eq. (12.42) in Bishop’s book is incorrect. In the original paper by Tipping and Bishop
(1999) the correct distribution is stated.

N /

3.2 Variational autoencoder

Let us consider a more flexible nonlinear model that is given by

po(x|z) =N (x;po(z),051p),
pe(z) = N(2;0,1x),

where parameters 0 include variance parameter 03 >0and pg: RM — RPisa
nonlinear model of the mean of the normal distribution. In this lab we will model
e by a neural network and include its weights and biases in 8, but other models
could be used equally well.

In the lab session we will discuss different training approaches for this model. One
approach involves defining an encoding distribution g (z; x) that may depend on

x and some parameters ¢, and estimating and maximizing the so-called evidence
lower bound (ELBO)

Ez~q¢(z;x) [logpe(x | Z)] — KL (Q¢(Z; X) H pg(z)) .

A common choice is to define ¢ as a multivariate normal distribution with diagonal
covariance matrix, i.e., to set

qp(2: %) = N(z; g (x), diag(c(x))), (1)

where fig: RP — RM defines the mean of the normal distribution and 035 : RP —
R% the diagonal entries of the covariance matrix. We will model these functions
with a neural network, but, of course, other choices are possible as well. For this
particular choice of the encoding distribution ¢ a closed-form expression of the KL
divergence term exists.

Question 3.3: Let pg(z) = N(z;0,15) as in the nonlinear model above and
choose the distribution qg(z;x) in eq. (1) for the encoder.

Show that

KL(q¢(z;x) || po(z)) = Y KL(qe(2i;x) || po(z:))

M-

s
Il
—

I
N |

(e300, + ()} ~1 - 10g (03,)

=1

(cf. exercise 10.1).

4 Laboratory session

This section contains instructions for the laboratory session. The main lab exercise is
to build and train models that generate images that look like hand-written digits. The
generation will be made possible by unsupervised learning of the most important
features of such images from a data set presented in Section 4.1

4.1 MNIST data set

We consider the so-called MNIST data set, which is one of the most well-studied
data sets within machine learning and image processing.

The data set consists of 60 000 training data points and 10 000 test data points. Each
data point consists of a grayscale image with 28 x 28 pixels of a hand-written digit.
The digit has been size-normalized and centered within a fixed-sized image. Each
image is also labeled with the digit (0, 1, ..., 8, or 9) it is depicting. In Figure[I|a
batch of 25 data points from this data set is displayed.

Label: 5 Label: 0 Label: 4 Label: 1 Label: 9
S04 /7 9
Label: 2 Label: 1 Label: 3 Label: 1 Label: 4
&\ 3\ ¥
Label: 3 Label: 5 Label: 3 Label: 6 Label: 1
3 3 6 |
Label: 7 Label: 2 Label: 8 Label: 6 Label: 9
7 38 6 %
Label: 4 Label: 0 Label: 9 Label: 1 Label: 1

X
Q

71/ 4

Figure 1: Samples from the MNIST data set.

We consider each image as a vector x = [xl e :EP]T, where each x; corre-
sponds to one of the p = 28 x 28 = 784 pixels in the image. The value of each z;
represents the color of that pixel. The color value is within the interval [0, 1], where
x; = 0 corresponds to a black pixel and x; = 1 to a white pixel. Anything between
0 and 1 is a gray pixel with corresponding intensity.

https://en.wikipedia.org/wiki/MNIST_database

Based on a set of training data {Xi}f\i1 with images, the problem is to find a good
model that allows us to sample from the distribution

p(x)

of the images. Unfortunately, it is unclear what the best way is to model this
distribution of 784-dimensional vectors, since probably most of these vectors do
not even represent images of hand-written digits.

We approach the problem by trying to extract all important features of the images
and compress them to a low dimensional space, in such a way that we can reconstruct
the images reasonably well. Instead of generating new images by sampling 784-
dimensional vectors, we then try to sample a new set of low dimensional image
features and to construct a proper image from it.

4.2 Principal component analysis

One of the most common tools for dimensionality reduction is PCA. In exercise
11.1 we performed a PCA on the MNIST data.

Task 4.1 Go back to exercise 11.1 and solve it if you have not done so yet.)

4.3 Probabilistic principal component analysis

The PCA performs dimensionality reduction and hence allows us to condense the
high dimensional images to a two-dimensional representation. However, the PCA
does not provide us with a generative model of the images and hence does not allow
us to sample new MNIST-like images from the data distribution. Therefore we
move to a probabilistic setting with a probabilistic description of the encodings and
the mapping from the latent space to the space of images.

Task 4.2 Download the Jupyter notebook PPCA.ipynb and open it. Alternatively,
you can open the notebook on Google Colab.

Work through the notebook. You can write down your answers to the questions in
the notebook in the box below. °

10

https://uu-sml.github.io/course-apml-public/lab/PPCA.ipynb
https://colab.research.google.com/github/uu-sml/course-apml-public/blob/master/lab/PPCA.ipynb

N /

4.4 Variational autoencoder

The linearity assumptions of the probabilistic PCA model limit the quality of the
generated images and intuitively are a bit questionable. Therefore we add a nonlinear
mapping to our model.

Task 4.3 Download the Jupyter notebook VAE.ipynb and open it. Alternatively, you
can open the notebook on Google Colab.

Work through the notebook. You can write down your answers to the questions in
the notebook in the box below. o

11

https://uu-sml.github.io/course-apml-public/lab/VAE.ipynb
https://colab.research.google.com/github/uu-sml/course-apml-public/blob/master/lab/VAE.ipynb

N /

4.5 Deep hierarchical variational autoencoder

The variational autoencoder (VAE) that we trained in the lab allows us to generate
MNIST-like images. The quality of the images is clearly better than the quality of
the samples from the probabilistic PCA model. However, it is still a quite simple
model which, of course, also limits the quality of the samples.

The so-called nouveau variational autoencoder (NVAE) (Vahdat & Kautz, 2021)) is
a state-of-the-art VAE with an advanced hierarchical structure of the encoder and
decoder. The authors applied it to multiple image data sets such as the MNIST data
set and the CelebA (Liu et al., 2015) and CelebA HQ (Karras et al.,|[2018]) data sets
of celebrity images. Figure[2]shows samples of the NVAE for the CelebA HQ data
set.

12

Figure 2: Samples from the NVAE (Vahdat & Kautz,2021).

Task 4.4 Download the Jupyter notebook NVAE.ipynb| and open it. Alternatively,
you can open the notebook on Google Colab. We recommend that you run the
notebook on Google Colab since it allows you to use GPUs which will speed up
the computations a lot (you can enable GPU support in the "Runtime" — "Change
runtime type" menu).

Run the notebook and play around with it. Try some of the suggestions in the task
at the end of the notebook. o

13

https://uu-sml.github.io/course-apml-public/lab/NVAE.ipynb
https://colab.research.google.com/github/uu-sml/course-apml-public/blob/master/lab/NVAE.ipynb

References

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2018). Progressive growing of gans
for improved quality, stability, and variation.

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders.
arXiv: 1906.02691 [cs.LG]l

Liu, Z., Luo, P, Wang, X., & Tang, X. (2015). Deep learning face attributes in the
wild. Proceedings of International Conference on Computer Vision (ICCV).

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3), 611-622.

Vahdat, A., & Kautz, J. (2021). NVAE: A deep hierarchical variational autoencoder.

14

https://arxiv.org/abs/1906.02691

	Introduction
	PyTorch
	Installation
	Comparison with TensorFlow
	Introduction

	Preparatory exercises
	Probabilistic principal component analysis
	Variational autoencoder

	Laboratory session
	MNIST data set
	Principal component analysis
	Probabilistic principal component analysis
	Variational autoencoder
	Deep hierarchical variational autoencoder

