Deep Learning 2026: Hand-in Assignment 1

January 20, 2026

Individual assignment Due: February 8, 2026

In this individual assignment, you will implement a neural network to classify images. You will consider
the so-called MNIST dataset, which is one of the most well-studied datasets within machine learning and image
processing. The dataset consists of 60 000 training data points and 10 000 test data points. Each data point consists
of a 28 x 28 pixels grayscale image of a handwritten digit. The digit has been size-normalized and centered within
a fixed-sized image. Each image is also labeled with the digit (0,1,...,8, or 9) it is depicting. In Figurem a set of 100
random data points from this dataset is displayed.

—h
i

'
=%
V0
3
LR
V%
35y

06O

050

e
L]
—h
i
—
=

AR

HAYALDR
Oy

hee
LHHR =R R
254
—_—— 0

)

RINTHI R

SN AL

ARRRH A
~ 00

D2 6L i
L1

O
0
L3

Figure 1: Some samples from the MNIST dataset used in the assignment. The input is the pixel values of an image (grayscale),
and the output is the label of the digit depicted in the image (blue).

In this classification task, we consider the image as our input x = [z1,...2p,]T. Each input variable Z;
corresponds to a pixel in the image. In total we have D; = 28 - 28 = 784 input variables. The value of each x;
represents the color of that pixel. The color-value is within the interval [0,1], where x; = 0 corresponds to a black
pixel and z; = 1 to a white pixel. Anything between 0 and 1 is a gray pixel with corresponding intensity.

The dataset is available in the file MNIST. zip from the course homepage. The dataset is divided into subfolders
train and test, and further into subfolders 0-9 containing several images in the form 0000 .png-xxxx.png.
(Note: Each class does not have exactly the same number of images.) All images are 28 x 28 pixels and stored in
the png-file format. We provide a script load_mnist injutils. py for importing the data.

https://github.com/uu-sml/course-dl-public/blob/main/HA1/utils.py

—GI N

» Debugging: If something does not work, try to isolate the problem. Comment out code that
possibly has bugs, do plenty of printouts and plots. Simplify the task until it works and then work
from there. Work in small iterations.

* One-sample training: Can the network converge if you only have one sample in the train set and
overfit to that?

* Training time: These are very small images; the network should converge in minutes when
training. If it takes longer, you probably have a bug or your code is not vectorized (you’re not using
numpy matrix multiplication or broadcasting).

Classification of handwritten digits

In this hand-in assignment, you will implement and train a fully connected neural network for solving a classification
problem with multiple classes. To solve this assignment, you can use, combine, and extend the notebooks you
produced in|Lab 1.

It is strongly encouraged that you write your code in a vectorized manner (as you did inLab 1), meaning that you
should not use for or while loops over data points or hidden units, but rather use the equivalent matrix/vector
operations. In modern languages that support array processinﬂ (in this case numpy in Python), the code will run
much faster if you vectorize. This is also how modern software for deep learning works, which we will be using later
in the course. Finally, vectorized code will require fewer lines of code and will be easier to read and debug. To
vectorize your code, choose which dimension represents your data points, and be consistent with your choice. In
machine learning and Python, it is common to reserve the first dimension for indexing the data points, i.e., one row
equals one sample. For example, for a linear model

fi:QXi—i-ﬂ, i:17...,1b,

the vectorized version (transposing the expression above to get each f; as a row output) for a mini-batch with I;, data
points would be

£l x{
= QT +s" (1)
f—Irb X—Irb

where BT is added to each row (called broadcasting in Python) Note that in the main optimization loop, we still
need a for-loop over the number of epochs/iterations.

The recommended loss function ¢; for a multi-output classification problem is the cross-entropy loss, which, for
numerical issues when f < 0, is computed fogether with the softmax function. The cost L, for a D,-class problem,
is computed by summing the loss ¢; over all the training points x;

D, D,
¢; =log (Z exp[fm}) - Z Yik fik L=
k=1

k=1

I
Z ?; 2
=1

~l =

where y; is the one-hot encoding of the true label y; for data point i

~ 1, ity =k -
y““{(), if i £ k fork=1,...,D,

1https ://en.wikipedia.org/wiki/Array_programming
ZYou might want to consider implementing the transposed version of €2 and 3 to avoid the transposes in this vectorized model.

https://uu-sml.github.io/course-dl-public/Lab1/instructions.pdf
https://uu-sml.github.io/course-dl-public/Lab1/instructions.pdf
https://en.wikipedia.org/wiki/Array_programming

Exercise 1. Implement a multi-layer neural network:

In Python, using numpy, implement a fully connected neural network for solving the classification problem. It
should involve the following functionalities, some of which have already been implemented in Lab 1;

1.

Initialize. A function initialize that initializes €2, 3, for each layer in the model. Note that when adding
more layers, it is important that the elements in the weight matrices are initialized randomly (why?). Initialize
each element in €2, using He initializatio The offset vectors 3;, can be initialized with zeros.

. Activation functions. Two functions sigmoid and ReLU that implement each of the corresponding activation

functions, as well as their derivatives. Note, only the second one was implemented in|Lab 1|
1
sigmoid : af[z] = T expl—al RelU: a[z] = max(0,x). 3)

Also, implement the derivative with respect to the input for each of the two activation functions.

. Forward propagation. A function forward_pass that does the forward propagation for all the layers in the

model. It is recommended that the function also returns all pre-activations and activations for all layers. This
will make the backward propagation more efficient.

. Softmax and cost. Write a function softmax that computes the softmax activation function as

_ explfi]
=—p
2wy explfiv]
Also, write a function compute_cost that computes the cost from the last layer linear output f. Preferably,
compute_cost should compute softmax and the cross-entropy loss combined in its simplified form, as shown

in (). Finally, write a function d_cost_d_output that computes the derivative of the cost with respect to
the last layer linear output. See also Task 3.6 in Lab 1 for additional guidance on these functions.

Di k=1,...,D,.)

Optional: For numerical stability when f > 0, reduce the magnitude of f by subtracting its maximum value
before computing the loss (verify that adding a constant to f does not change the loss).

. Backward propagation. A function backward_pass that computes backward propagation for all the layers

in the model.

. Take a step. Write a function update_parameters that updates the parameters for every layer based on

provided gradients. Scale the update step by the learning rate o, which will determine the size of the steps
you take in each iteration.

. Predict. A function predict which, using the trained model, and a data set (can be either train or test

data), predicts softmax output based on corresponding inputs x;. Also, compute the accuracy by counting
the fraction of times your prediction, obtained as the maximum index in the softmax output p,, matches the
correct class label. As the last function output, return the cost for the data set.

. Mini-batch generation. A function random_mini_batches that randomly partitions the training data into

several mini-batches (x_mini, y_mini).

. Model training. A final function train_model that iteratively calls the above functions that you have defined.

We expect that it should have as inputs, at least:

X_train: train data

y_train: train labels

model: defining the model architecture in some way, e.g., a vector with the number of nodes in each layer
num_epochs: number of epochs to be used during training

learning_rate: learning rate « that determines the step size

batch_size: number of training examples to use for each step

To monitor the training, you may also wish to provide test data (not used for training!):

X_test: test data

y_test: test labels

and call the performance function every k:th iteration. We recommend that you save and return the training
and test costs and accuracies at every k:th iteration in a vector, and possibly also print or plot the results live
during training.

3See section 7.5 in the course book

https://uu-sml.github.io/course-dl-public/Lab1/instructions.pdf
https://uu-sml.github.io/course-dl-public/Lab1/instructions.pdf
https://uu-sml.github.io/course-dl-public/Lab1/instructions.pdf

Note 1: The above function names are suggestions; you are allowed to structure your code in another way if you feel
that it suits you more.

Note 2: If you use columns for data point dimension, remember to transpose the data matrices after loading the data
via load_mnist inutils.py.

Exercise 2. Evaluate a linear model

Evaluate your code on the MNIST dataset by first considering a linear model, i.e., a neural network with zero layers
of hidden unitﬂ Use the provided code to extract the train and test data and labels in the desired format. You should
be able to reach over 90% accuracy on the test data.

(a) Usingmatplotlib, produce a plot of the cost, both on training and test data, with epochs on the x-axis. Also,
include a plot with the classification accuracy, also evaluated on both test and training data, with epochs on
the x-axis. For the training data, evaluate on the current mini-batch instead of the full training dataset. As a
help, you are strongly suggested to use the function training_curve_plot inutils.py. It plots a training
curve using arrays of training and test accuracies/costs that you stored during your training.

(b) Extract each of the ten rows (or columns, depending on your implementation) of your weight matrix, reshape
each of them into size 28 x 28, and visualize them as 10 images. What is your interpretation of these images?
Include a few of these images in the report.

Exercise 3. Evaluate your multi-layer neural network

Evaluate your full neural network with several layers. Try both of the two activation functions. You should be able
to get up to almost 98% accuracy on the test data after playing around a bit with the design choices. Train the model
until convergence, i.e., until the point that you don’t see any clear improvement. Provide two plots, one plot for each
of the two activation functions, using similar plotting code as you used in Exercise 2a).

Exercise 4. Implement batch gradient descent with momentum

Voluntary extra task (for your own learning pleasure): Implement extensions to mini-batch gradient descent, like use
of momentum (easy) and ADAM (a little bit more work).

Submission instructions: Submit a PDF with answers to Exercise 1, Exercise 2, Exercise 3, and possibly Exercise
4. Also include your well-commented code as an appendix in your PDF and as a separate zip-file. Submit both files
in one submission. Use the Assignment template|for compiling the PDF.

4If your code is based on the notebooks in|Lab 1, use K = 0 to get a linear model.

https://github.com/uu-sml/course-dl-public/blob/main/HA1/utils.py
https://github.com/uu-sml/course-dl-public/blob/main/HA1/utils.py
https://uu-sml.github.io/course-dl-public/HA1/assignment-template.zip
https://uu-sml.github.io/course-dl-public/Lab1/instructions.pdf

Please check these things before handing in:

|
|

0
]

No miss: Make sure you didn’t miss answering any task.

Repeat the problem: Start the answer to each task with the problem formulation (a short sentence
where you write with your own words what you did). For example, "Exercise 1: In Exercise 1, we
implement ... using ... since ..." instead of just "Exercise 1: Answer...". Also, provide details about
learning rate, batch size, and number of nodes in each layer when applicable.

Concise answers: Still, be short and concise in your answers. You don’'t need to write long
explanations for each exercise.

Plots available: All requested plots are available and have proper figure captions, legends, and
axis labels. The plots are visible (not too small text), and you comment on what can be seen in the
plots.

Reasonable accuracy: The accuracy on the test-set of the one-layer network should be at least
90% and the multi-layer at least 95% if you implemented everything correctly. If you choose the
learning rate, number of hidden nodes and layers in a good way, you can get above 98% in Exercise
3. Try to experiment a bit.

Generative Al: You have commented if you have used any generative Al, and if so, how[]

Code: Code is both attached as an appendix to the PDF and submitted as a separate zip-file.

“See on Studium regarding use of generative Al

