
Uppsala University
Department of Information Technology
Division of Systems and Control
NW 2024-12
Last rev. February 6, 2025 by NW

Deep Learning

Instruction to the laboratory work

Lab 1: Linear regression and
backpropagation

Language: Python/numpy

Preparation:
Read what is stated in the reading instructions below
Solve all preparatory exercises in Section 2

Reading instructions:

• UDL book: Chapter 7.1-7.4

• These lab instructions: Chapter 1-2.

• Skim through instructions for Hand-in assignment 1

Name Assistant’s comments

Program Year of reg.

Date

Passed prep. ex. Sign

Passed lab. Sign

https://uu-sml.github.io/course-dl-public/HA1/hand-in-assignment-1.pdf

Contents

1 Introduction 1

2 Preparation exercises 1
2.1 Linear regression . 1
2.2 Softmax and cross-entropy . 3

3 Laboratory exercises 4
3.1 Linear classification and gradient descent 4
3.2 Backpropagation in toy model 5
3.3 Backpropagation in neural network model 5
3.4 Backpropagation for multiple data points 5
3.5 Backpropagation with softmax output and cross-entropy loss . . . 6
3.6 Moving forward for Hand-in assignment 1 7

1 Introduction

After completing this laboratory assignment, you should:

• know how to implement and train a linear classification model from scratch,

• understand and implement the equations in backpropagation, and

• have a clear path forward for solving Hand-in assignment 1

After this lab, you will put the pieces together in Hand-in Assignment 1, with the
goals to

• implement a fully interconnected multilayer neural network from scratch and

• optimize that model using backpropagation together with stochastic gradient
descent.

2 Preparation exercises

2.1 Linear regression

Consider a regression problem with multivariate input x = [x1, . . . , xDi]
T and

scalar output y ∈ R. We want to find a model from the input to the output using a
linear regression model,

y = f [x,ϕ] =

Di∑
j=1

ωjxj + β = ωTx+ β (1a)

where the weight vector ω = [ω1, . . . , ωDi]
T and the offset β are the parameters

ϕ = {ω, β} of the model.

Consider a dataset {xi, yi}Ii=1. The cost L is computed by summing the following
loss ℓi (mean squared error, MSE) over all training data points

L =
1

I

I∑
i=1

ℓi, with the loss ℓi = (fi − yi)
2, (1b)

where
fi = f [xi,ϕ] =

Di∑
j=1

ωjxij + β (1c)

is the output of the model for input xi and where xij is the jth component of xi.
This can also be written in a vectorized manner as

L =
1

I
∥f − y∥2, f = Xω + β, where X =

x11 . . . x1,Di

...
...

xI,1 . . . xI,Di

 , y =

y1...
yI

where β is added to each row (called broadcasting in Python language).

1

To train this model with gradient descent, we need access to the gradient of the loss
with respect to the model parameters, i.e., the partial derivatives ∂ℓi

∂ω1
, . . . , ∂ℓi

∂ωDi
, and

∂ℓi
∂β . These you will derive in the following.

Question 2.1: Given a data point xi, yi and the model in (1), derive expressions for

∂ℓi
∂β

and
∂ℓi
∂ωj

expressed in terms of
∂ℓi
∂fi

,
∂fi
∂β

, and
∂fi
∂ωj

. (2)

Note: The "in terms of" means that the answer should only include these three terms.'

&

$

%

Answer:

Question 2.2: Based on the model in (1), derive expressions for (the above used
variables) ∂ℓi

∂fi
,

∂fi
∂β

, and
∂fi
∂ωj

. (3)'

&

$

%

Answer:

Question 2.3: Consider all data points X, y. Give expressions for the derivatives
of the cost (1b) ∂L

∂β and ∂L
∂ω . Do this by writing the expressions in Question 2.1 and

2.2 in a vectorized manner, i.e. using the following vectors and matrices

∂L

∂f
=

1

I

∂ℓ1
∂f1
...

∂ℓI
∂fI

 ,
∂f

∂β
=
[
∂f1
∂β . . . ∂fI

∂β

]
,

∂f

∂ω
=

∂f1
∂ω1

. . . ∂fI
∂ω1

...
...

∂f1
∂ωDi

. . . ∂fI
∂ωDi

'

&

$

%

Answer:

2

2.2 Softmax and cross-entropy

For a classification problem with multiple classes y ∈ {1, . . . , Do} we typically use
a softmax function

softmaxk[f] =
exp[fk]∑Do

k′=1 exp[fk′]
(4)

The likelihood that input x belongs to class y is then

Pr(y = k|x) = softmaxk
[
f [x,ϕ]

]
(5)

where f [x,ϕ] is a regression model

f [x,ϕ] = Ωx+ β. (6)

with the parameters ϕ = {Ω,β}.

The recommended loss function ℓi for a multiclass classification problem is the
cross-entropy loss, which, for numerical reasons when f ≪ 0, is computed together
with the softmax function1

ℓi = −
Do∑
k=1

ỹik log [softmaxk(f i)]

= log

(
Do∑
k=1

efik

)
−

Do∑
k=1

ỹikfik (7)

where ỹik is the one-hot encoding of the true label yi for data point i

ỹik =

{
1, if yi = k
0, if yi ̸= k

for k = 1, . . . , Do

and fik is the kth output of the regression model f [xi,ϕ].

Question 2.4: Given a data point xi, ỹi, based on the loss function in (7), derive
expressions for

∂ℓi
∂fik

.'

&

$

%

Answer:

1Make sure you understand that (7) is the same expression as terms in eq. (5.24) in the course book.

3

3 Laboratory exercises

This section contains instructions for the laboratory session. It consists of three
notebooks. In the first notebook, you will implement and train a linear regression
model using gradient descent only using numpy. In the following two notebooks,
you will implement the equations required for implementing and training a neural
network.

3.1 Linear classification and gradient descent

Task 3.1 Download the Jupyter notebook Auto_linear_regression.ipynb and open
it. Alternatively, you can open the notebook on Google Colab. Work through the
notebook. You can write your answers to the questions in the notebook below. ◦'

&

$

%

Answer:

4

https://github.com/uu-sml/course-dl-public/blob/main/Lab1/Auto_linear_regression.ipynb
https://colab.research.google.com/github/uu-sml/course-dl-public/blob/main/Lab1/Auto_linear_regression.ipynb

3.2 Backpropagation in toy model

Now, we will start investigating the backpropagation algorithm. We will do so by
examining the Toy model presented in Section 7.3 of the UDL book.

Task 3.2 Download the Jupyter notebook Backpropagation_in_Toy_Model.ipynb
and open it. Alternatively, you can open the notebook on Google Colab. Work
through the notebook. ◦

3.3 Backpropagation in neural network model

Now, we will proceed with the backpropagation algorithm for a fully connected
neural network model.

Task 3.3 Download the Jupyter notebook backpropagation.ipynb and open it. Alter-
natively, you can open the notebook on Google Colab.

Work through the notebook. When done, evaluate the code for different values of
hidden units K, neurons per layer D, input dimension D_i, and output dimension
D_o. You find these parameters at the beginning of the notebook. ◦

3.4 Backpropagation for multiple data points

The code only runs the backpropagation algorithm for one data point, and you
should now extend it to handle multiple data points. We now want our code to
compute the derivative of the total cost with respect to our weights and biases

∂L

∂βk

=
1

I

I∑
i=1

∂ℓi
∂βk

∂L

∂Ωk
=

1

I

I∑
i=1

∂ℓi
∂Ωk

You should not add any additional for or while loops over data points or hidden
units, but rather use the equivalent matrix/vector operations. Therefore, you should
decide which dimension indexes your data points and be consistent with that choice.

By choosing the second dimension (columns) representing the data index, the code
requires only a minor modification. That means that the entries in the lists of activa-
tions, pre-activations all_f and all_h, corresponding derivatives all_dl_df
and all_dl_dh all represent matrices, with one column for each data point.

Task 3.4 Make a copy of the notebook in Task 3.3 and extend it to handle multiple
data points. Choose the second dimension (columns) to index the data points.
Evaluate your code by changing the parameter n_samples = 1 to something
greater than 1. Which line(s) in forward_pass and backward_pass do you
need to change? Why do some lines not require any change at all? After doing the
extension, make sure that the derivatives of weight matrices and biases still match
up with the finite-difference approximation! ◦

Hint: If you don’t know where to start, just run your existing code with n_samples
larger than 1 and debug from there based on your response.

5

https://github.com/uu-sml/course-dl-public/blob/main/Lab1/Backpropagation_in_Toy_Model.ipynb
https://colab.research.google.com/github/uu-sml/course-dl-public/blob/main/Lab1/Backpropagation_in_Toy_Model.ipynb
https://github.com/uu-sml/course-dl-public/blob/main/Lab1/backpropagation.ipynb
https://colab.research.google.com/github/uu-sml/course-dl-public/blob/main/Lab1/backpropagation.ipynb

In machine learning and Python, it is common to reserve the first dimension for
indexing the data points (i.e., one row equals one sample).

Task 3.5 (optinal) Modify your code in Task 3.4 such that the first dimension
(rows) indexes the data points. This essentially requires transposing several of the
questions. Evaluate your code in the same manner as above. ◦

3.5 Backpropagation with softmax output and cross-entropy loss

The code only runs the backpropagation algorithm for the least square loss.

Task 3.6 (optimal but strongly recommended for completing HA1)
Make a copy of the notebook in Task 3.4 (or Task 3.5).

• Implement a function softmax that computes the softmax for every network
output. See Equation (4).

• Add or replace the compute_costwith the cross-entropy loss with softmax.
See Equation (7).

• Add or replace the d_cost_d_output with the derivative of cross-entropy
loss with softmax. See Preparatory Exercise 2.4.

After doing the extension, make sure that the derivatives of weight matrices and
biases still match up with the finite-difference approximation! ◦

Note 1: Your implementation should work for multiple data points, i.e., you need to
(also) sum over the data point dimension in compute_cost.

Note 2: The notation in the preparatory exercises is written with the first dimension
representing data points. Make sure that your implementation is consistent with
your choice of data point dimension.

Note 3: Preferably, normalize the cost (and its derivative!) with the number of data
points, as we did for the least squared loss.

Note 4: To evaluate the code, we need to define a (random) output y in the same
manner as the code does for evaluating the squared loss. Now, each column should
be a one-hot encoded vector (if you use the column to index data points). This can
(for example) be done with the following code line

y = np.eye(D_o)[np.random.choice(D_o, n_samples)].T

(or without the transpose if you did Task 3.5 and used rows as data point dimension).

Note 5: Output dimension D_o has to be larger than 1 for this cost function to make
any sense (otherwise, we only consider one class!).

6

3.6 Moving forward for Hand-in assignment 1

Task 3.7 Read through the instructions for Hand-in Assignment 1 and identify the
steps that need to be taken to complete that assignment based on the code you have
created in this lab. List these items below, along with possible questions you might
have for the teaching assistant related to this. Note, solution to Hand-in assignment 1
shall be handed in individually! ◦'

&

$

%

Answer:

7

	Introduction
	Preparation exercises
	Linear regression
	Softmax and cross-entropy

	Laboratory exercises
	Linear classification and gradient descent
	Backpropagation in toy model
	Backpropagation in neural network model
	Backpropagation for multiple data points
	Backpropagation with softmax output and cross-entropy loss
	Moving forward for Hand-in assignment 1

